AMD ROCm™ Basics &
Optimization Overview

Joe Liu X4 M
Jan 2026

AMD¢1

together we advance_

Agenda Introduction to the AMD ROCm™ Software Stack

Transitioning Workloads to AMD GPUs

Performance Optimization

Optimizing application using popular libraries
Profiling the models
Adding HIP kernel to implement a custom layer

Available Collaterals, Q&A

AMDZ1

AMD | PUBLIC | Jan 2026 together we advance_

AMD
R m

niels and Algorithms
"TO rch +Other Frameworks

Libraries
Compilers and Tools

Runtime

AMD GPU

AMD | PUBLIC | Jan 2026

Optimized Al Software Stack

Al Ecosystem optimized for AMD

AMDD | Open, Proven, Ready
ROCm software stack

‘ Leadership performance

« Commitment to Open-Source

 No Code Change Execution

* Optimized for Generative Al

AMDZ1

together we advance_

AMD ROCm™ Software Stack

Business Services

Al Solutions &
Services
Finetuned Models
WA mosaic™ Hugging Face
Ecosystem Opytorch T TensorFlow o%x el

Triton ’@ deepspeed @ OpenXLA

Open Software AMDZ
Platform ROCM

AMD GPU @© @©

AMD | PUBLIC | Jan 2026

Accelerated Al
Math &
Communication
Libraries

n

Compilers
& Tools

Ini

Drivers
Runtimes

-

MIT/BSD License

Apache License

GPL License
HPC Focused Al Focused
rocALUTION MIOpen
rocSOLVER rocPRIM MIGraphX rocWWMMA
rocSPARSE rocThrust hipBLASLL Comgfnssb'e
rocBLAS rocRAND rocFFT RCCL
Compiler Profile/Tracer Debugger HIPIFY

RedHat, SLES & Ubuntu Device Drivers and Run-time

AMDZ1

together we advance_

Library and Compiler Based Optimization

Max Performance Max Portability
Framework Operator Optimization IR-based Optimization

Target Specific Target Specific Vendor-agnostic Optimizations
Optimizations Optimizations

e et eV OpenaiTriton 0 OpenXLA

AMD GPUs AMD EPYC™ CPU AMD GPUs ¢ &7 @
©)

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83 AMD:‘
AMD | PUBLIC | Jan 2026 together we advance_

Agenda Introduction to the AMD ROCm™ Software Stack

Transitioning Workloads to AMD GPUs

Performance Optimization

Optimizing application using popular libraries
Profiling the models
Adding HIP kernel to implement a custom layer

Available Collaterals, Q&A

AMDZ1

AMD | PUBLIC | Jan 2026 together we advance_

Transitioning Al Workloads to AMD GPUs

Python

C++, Triton IR

C++

AMD | PUBLIC | Jan 2026

Nvidia

O PyTorch

ONNX

b

T TensorFlow

TRITON = CUDA Triton
KERNELS Backend

CUDA
KERNELs —~ NVCC

cuBLASIt,

cuSparse,
cuFFT,
NCCL,

cuDNN...

Drop-in
(Out-of-the-box)
Support

Drop-in

Port / Optimize

Mirror
Equivalent Libraries

4

AMD ROCm™ SW

O PyTorch
&

ONNX

bk

T TensorFlow

TRITON ROCM Triton
KERNELS ~ Backend

CUDA 5 HiPIFY — HIPCC
KERNELS

hipBLASIt,

rocSparse,
rocFFT,
RCCL,

MIOpen...

AMDZ1

together we advance_

ROCm™ Software: Can You Spot a Difference?

NVIDIA CUDA

import torch
import torch.nn as nn

Get cpu or gpu device for training.
device = "cuda:@" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

Define model
class Network(nn.Module):
def _ init_ (self):
super().__init_ ()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear (512, 512),
nn.ReLU(),
nn.Linear (512, 10)

)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

model = Network().to(device)
print(model)

AMD | PUBLIC | Jan 2026

)

AMD ROCm™ Software

import torch
import torch.nn as nn

Get cpu or gpu device for training.
device = "cuda:@" if torch.cuda.is_available() else
print(f"Using {device} device")

" "

cpu

Define model
class Network(nn.Module):
def __init_ (self):
super().__init_ ()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear (512, 10)

)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

model = Network().to(device)
print(model)

AMDZ1

together we advance_

PyTorch 2.8 Easily Enabled on AMD GPUs

Step 1. Install ROCm™
Software (Driver and SDK)

| PyTorch Build Stable (2.9.1)

| Your OS Linux Mac
| Package Conda Pip

| Language Python

| Compute Platform CUDA 12.6 CUDA 12.8

- pip3 install torch torchvision torchaudio --index-url
| AL ekl https.//download.pytorch.org/whl/rocme.4

Step 2. Install Pip Wheel
From Pytorch.Org

Preview (Nightly)
Windows
LibTorch

C++ / Java

ROCm 6.4

Optionally Install Docker containers from:
* rocm/pytorch:latest
* rocm/pytorch-nightly:latest

AMD | PUBLIC | Jan 2026

I

Step 3. Run Existing Code --
No Changes Required

import torch
import torch.nn as nn

Get cpu or gpu device for training.

device = "cuda:0" if torch.cuda.is_available() else
"cpu”

print(f"Using {device} device")

Define model
class Network(nn.Module):
def __init_ (self):
super().__init_ ()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)

)

def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits

model = Network().to(device)
print(model)

AMDZ1

together we advance_

https://download.pytorch.org/whl/rocm6.4

10

Agenda

AMD | PUBLIC | Jan 2026

Introduction to the AMD ROCm™ Software Stack
Transitioning Workloads to AMD GPUs

Performance Optimization

Optimizing application using popular libraries
Profiling the models
Adding HIP kernel to implement a custom layer

Available Collaterals, Q&A

AMDZ1

together we advance_

Inference Challenges and Optimization Opportunities

Output
—> Linear DEm—
Concat
Model parameter T | TunableOp
Quantization @ VRAM : @ GEMM
—> Multi-Head-Atth <+——
Linear Linear Linear «—
Flash Attn Paged Attn
@ SRAM @ K/V cache
Query Key Value

II9P cron ¢

GPU Kernels launch

I/:;
T .-k’g-*;i) =
Mty
U e AU

e “ @ parallelism

1 AMD | PUBLIC | Jan 2026

Flash Attention, Xformers
Tiling of input sequence in GPU SRAM to reduce VRAM data movement

Paged Attention

Partitioned KV cache into fixed size blocks to reduce memory usage

GEMM Optimization — PyTorch TunableOp

Automatic selection of the best performing GEMM kernels

Launch multiple kernels through a single CPU operation

Collective Ops across multiple devices to support Tensor/Pipeline parallel

Quantization — GPTQ, Bitsandbytes

Weight-only compression to reduce video memory footprint

AMDZ1

together we advance_

Portability - Libraries

XFORMERS

import xformers.ops as xops

out = xops.memory_efficient_attention(q,

k,
v,
attn_bias=None,
op =None)

12 AMD | PUBLIC | Jan 2026

ATTENTION

FLASH_ATTN

from flash_attn import flash_attn_varlen_func

batch and sequence dimensions merged into a single dimension
q, k, v = (rearrange(x, "bs ... -> (b's) ...")
for x in [q, k, Vv])

out = flash_attn_varlen_func(q,
k,
v,
cu_seqlens_qg=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_g=max_seqlen,
max_seqlen_k=max_seqlen)

AITER

from aiter import flash_attn_varlen_func

batch and sequence dimensions merged into a single dimension
q, k, v = (rearrange(x, "bs ... -> (b 's) ...")
for x in [q, k, Vv])

out = flash_attn_varlen_func(q,
k,
v,
cu_seqlens_q=cu_seqlens,
cu_seqlens_k=cu_seqlens,
max_seqlen_qg=max_seqlen,
max_seqlen_k=max_seqlen)

AMDZ1

together we advance_

Agenda

AMD | PUBLIC | Jan 2026

Introduction to the AMD ROCm™ Software Stack
Transitioning Workloads to AMD GPUs

Performance Optimization

Optimizing application using popular libraries
Profiling the models
Adding HIP kernel to implement a custom layer

Available Collaterals, Q&A

AMDZ1

together we advance_

The Components in the Environment =

User submits jobs (sbatch / srun)

Slurm scheduling layer
* Allocate nodes / CPU / GPU

Container 1 Container N

] _ Applications
+ Launch the container runtime ROCM Toolkit
Container OS

+ Container layer (Docker / Apptainer) User Space

* Application
* ROCm user space (HIP Runtime / rocBLAS / MIOpen)

Docker Engine

Host driver layer
« ROCM driver + kernel

+ /dev/kfd, /dev/dri device mapping Toolk
Host OS

Hardware layer
* AMD GPUs & CPUs

AMD GPUs

o {7 AMDZ1

14 AMD | PUBLIC | Jan 2026 together we advance_

The Profiling Tools and Visualization - rocm-smi

* A command-line utility and library provided by ROCm
for monitoring the following AMD GPU status:

+ Power, temperature, clocks (gfx/mem), voltage, fan speed
+ GPU utilization, memory usage (VRAM/GTT), PCle link speed/width

» Typical usages:

rocm-smi

rocm-smi --showpower --showtemp --showclocks --showuse
rocm-smi --showmemuse -showbus

rocm-smi -showpids

-n @ rocm-smi

15 AMD | PUBLIC | Jan 2026

-c rocm-smi --showclocks

Every 2.0s: rocm-smi --showclocks

ROCm System Management Interface

Current clock frequencies

GPU[€ : dcefclk clock level: O: (145Mhz)
GPU[@ : fclk clock level: 1: (1000Mhz)
GPU[© : mclk clock level: 0: (96Mhz)

GPU[O : sclk clock level: 1: (0Mhz)

GPU[€ : socclk clock level: 1: (600Mhz)
GPU[O : pcie clock level: 0 (16.0GT/s x16)
GPU[1 : dcefclk clock level: 0: (145Mhz)
GPU[1 ¢ fclk clock level: 1: (1000Mhz)
GPU[1 : mclk clock level: 0: (96Mhz)

GPU[1 : sclk clock level: 1: (0Mhz)

GPU[1 : socclk clock level: 1: (600Mhz)
GPU[1 : pcie clock level: 0 (16.0GT/s x16)
GPU[2 : dcefclk clock level: 0: (145Mhz)
GPU[2 : fclk clock level: 1: (1000Mhz)
GPU[2 : mclk clock level: 0: (96Mhz)

GPU[2 : sclk clock level: 1: (0Mhz)

GPU[2 : socclk clock level: 1: (600Mhz)
GPU[2 : pcie clock level: 0 (16.0GT/s x16)
GPU[: dcefclk clock level: 0: (145Mhz)
GPU[: fclk clock level: 1: (1000Mhz)
GPU| : mclk clock level: 0: (96Mhz)

GPU| : sclk clock level: 1: (0Mhz)

GPU| : socclk clock level: 1: (600Mhz)
GPU[: pcie clock level: 0 (16.0GT/s x16)
GPU[4 : dcefclk clock level: 0: (145Mhz)
GPU[4 : fclk clock level: 1: (1000Mhz)
GPU[4] : mclk clock level: 0: (96Mhz)

GPU[4] : sclk clock level: 1: (0Mhz)

GPU[4] : socclk clock level: 1: (600Mhz)
GPU[4 : pcie clock level: 0 (16.0GT/s x16)
GPU[5 : dcefclk clock level: 0: (145Mhz)
GPU[5 : fclk clock level: 1: (1006Mhz)
GPU[5 : mclk clock level: 0: (96Mhz)

GPU[5 : sclk clock level: 1: (OMhz)

GPU[5 : socclk clock level: 1: (600Mhz)
GPU[5 : pcie clock level: 0 (16.0GT/s x16)
GPU[6 : dcefclk clock level: 0: (145Mhz)
GPU[6 : fclk clock level: 1: (10006Mhz)
GPU[6 : mclk clock level: 0: (96Mhz)

GPU[6 ¢ sclk clock level: 1: (OMhz)

GPU[€ : socclk clock level: 1: (600Mhz)
GPU[6 : pcie clock level: 0 (16.0GT/s x16)
GPU[7 : dcefclk clock level: 0: (145Mhz)
GPU| : fclk clock level: 0: (601Mhz)

GPU| : mclk clock level: 0: (96Mhz)

GPU[: sclk clock level: 1: (0Mhz)

GPU| : socclk clock level: 0: (500Mhz)
GPU[: pcie clock level: 0 (16.0GT/s x16)

End of ROCm SMI Log

AMDZ1

together we advance_

The Profiling Tools and Visualization

PyTorch PyTorch Profiler

https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

import torch
from torch.profiler import profile, record_function, ProfilerActivity

RAD'gn'? el ROCProfiler

https://rocm.docs.amd.com/projects/rocprofiler/en/latest/install/install.html

rocprof and rocprofv2 are included as standard components of the

2 Wa Wa PO BN SN S R

rocprof -d outputFolder --hip-trace ./Matrixtranspose

ROCTracer APl is a library that requires minor code modification in

the application to be traced but provides greater flexibility

it of or |

16 AMD | PUBLIC | Jan 2026

M Perfetto

Q

r 2

AMDZ1

together we advance_

https://rocm.docs.amd.com/projects/rocprofiler/en/latest/install/install.html

17

The Profiling Tools and Visualization - Samples

vlim/model_executor/layers/sampler.py(206): forward

TS0 N N A .

S e

v—*g«mmvmrnm"mmu‘mwwnm R0 doun no the pafl

R g
! stack of the code.

I{IIII[H[J\I!IIIII\III\IIIIH | (usingChatGLI\/Iasan
OO %/

AMD | PUBLIC | Jan 2026

AMDZ1

together we advance_

ROCprof Compute Viewer

Import Edit Help
Input Plots Options Counters Wave States Hotspot Occupancy Kernel Dispatches Compute Unit Utilization
45400 5500 45600 45700 4500 45900 26000 100 46200 630 46400 46500 46600 46100 500 46900
Ul Path:
tput_agent 50641_dispatch_200033
Shader =~ SIMD Slot WavelD
0 >0 ¥ |0 >0 L2
GlobalView zoom: 10 o
P = | ismo-ooHEEENEN (LTIl 0 IO TOUR TURE OO COURE CTTO I O O 0 I I I I I O O OO I I | (N | YN NN O O O O O
: - i i i i i ! T T] i
sm1-o0 lTHENH 11 IIIIIIIIIIIIIIIIIIIIIIIIIIII N N N O O NN O O
Iteration 1 sv2-coll MM A0 A AR O MMM S A N O O O O O
ovelen dock range sv-o M 8 1 s 0 O s
33172 R = .
Instructions Global View Summary Explorer
128660 75
Instructlon Hitcount | Latency: Sum all ¥ Idle
B i I e A T 15 mLm=cc—a -—= ===
Search Next Prev ds r-ead b128 v[146: 149], v21 offset:896 352 2816
v_mfma_f32_16x16x32_bfie a[72:75], v[114:117], v[34:37], a[72:75] 352 2816
History ds_read_b128 v[82:85], v2@ offset:192 352 2816
Token Cycle v_mfma_f32_16x16x32_bfle a[76:79], v[114:117], v[38:41], a[76:79] 352 2816
ds_read_b128 v[150:153], v21 offset:192 352 2816
L LI AR s_waitcnt lgkment(11) 352 1408
| v_mfma_f32_16x16x32_bf1l6 a[@:3], v[118:121], v[42:45], a[@:3] 352 1408
— ds_read_b128 v[86:89], v2@ offset:9408 850 2816
v_mfma_f32_16x16x32_bfl6 a[4:7], v[118:121], v[46:49], a[4:7] 352 2816
| | — ds_read_b128 v[90:93], v20 offset:18624 352 2816
v_mfma_f32_16x16x32_bfl6 a[8:11], v[118:121], v[5@:53], a[8:11] 550, 2816
| — ds_read_b128 v[94:97], v20 offset:27840 352 2816
| v_mfma_f32_16x16x32_bfl6 a[12:15], v[118:121], v[54:57], a[12:15] S50 2816
| — ds_read_b128 v[98:101], v2@ offset:37056 352 2816
v_mfma_f32_16x16x32_bf16 a[16:19], v[118:121], v[58:61], a[16:19] 352 2816
— ds_read_b128 v[154:157], v21 offset:448 552 2816
v_mfma_f32_16x16x32_bfle a[20:23], v[122:125], v[42:45], a[20@:23] 352 2816
ds_read_b128 v[158:161], v21 offset:704 352 2816
v_mfma_f32_16x16x32_bfle a[24:27], v[122:125], v[46:49], a[24:27] 350 2816
~+ ds_read_b128 v[162:165], v21 offset:960 352 2816
v_mfma_f32_16x16x32_bfl6 a[28:31], v[122:125], v[50:53], a[28:31] S50 2816
v_mfma_f32_16x16x32_bfl6 a[32:35], v[122:125], v[54:57], a[32:35] 352 5632
v_mfma_f32_16x16x32_bfl6 a[36:39], v[122:125], v[58:61], a[36:39] 352 5632
v_mfma_f32_16x16x32_bfl6 a[4@0:43], v[126:129], v[42:45], a[40:43] 552 5632
v_mfma_f32_16x16x32_bfle a[44:47], v[126:129], v[46:49], a[44:47] 352 5632
s_waitcnt lgkment(e) 352 1408
s_barrier 350 4132
v_mfma_f32_16x16x32_bfle a[48:51], v[126:129], v[50:53], a[48:51] 352 1408
T * s_waitcnt vment(17) 352 1408
ds_write_b128 v18, v[166:169] 352 10452
v_mfma_f32_16x16x32_bf16 a[52:55], v[126:129], v[54:57], a[52:55] 352 1408
+ buffer_load_dwordx4 v[166:169], v@, s[64:67], @ offen 552 3464
s_waitent vment(17) 352 1408
— ds_write_b128 v18, v[170:173] offset:4608 352 13376
1 v_mfma_f32_16x16x32_bfl6 a[56:59], v[126:129], v[58:61], a[56:59] 350! 1408
I - e buffer_load_dwordx4 v[170:173], vl1, s[64:67], @ offen S50 3168 -
18 AMD | PUBLIC | Jan 2026 together we advance_

19

The Profiling Tools and Visualization — Omniperf

Core Omniperf profiler

+ Raw performance counters via application using ROCProfiler GUI Visualizer (Grafana)
+ Hierarchical roofline data is obtained by a set of micro-benchmarks T
S s
- Grafana server for Omniperf DB Backend
- Database: Raw performance counters are imported into a MongoDB T
« Grafana GUI: It displays the relevant performance metrics and
visualization by retrieving the data from database DB Importer CLI Analyzer

Omniperf Standalone GUI Analyzer VM /
e g

* Omniperf provides a standalone GUI to enable basic performance

analysis without the need to import data into a database instance. CSV Suite
* Features s ! c—
+ Speed-of-Light (SOL) Perf Counters > ROC Profiler < Microbench

« Hardware Block-level SOL Evaluations

: ?ooflineAnaIysis

AMD GPUs

AMDZ1

AMD | PUBLIC | Jan 2026 https://rocm.docs.amd.com/projects/omniperf/en/docs-6.2.1/what-is-omniperf.html together we advance_

https://rocm.docs.amd.com/projects/omniperf/en/docs-6.2.1/what-is-omniperf.html

20

Agenda

AMD | PUBLIC | Jan 2026

Introduction to the AMD ROCm™ Software Stack
Transitioning Workloads to AMD GPUs

Performance Optimization

Optimizing application using popular libraries
Profiling the models
Adding HIP kernel to implement a custom layer

Available Collaterals, Q&A

AMDZ1

together we advance_

ROCm Core - Custom HIP GEMV Kernel “hello world” sample

Given a matrix (M x N), a vector (N x 1), GEMV(matrix, vector) produces an output vector (M x 1)

GPU kernel (kernel.h) launched from host (host.cpp) explores the GPU compute capability by a single
instruction multiple threads (SIMT) design

The Implementation Structure of a HIP GEMV Kernel

> host.cpp *_____ﬁ_fl_r]_c!g_c!(_a__k_e_lzr_]_e_l_.h -------------- kernel.h — #include <hip header file>

|

A kernel wrapper function for kernel calling main() function for evaluation hip gemv kernel implementation
A 4 4
step1: thread grid and block definition; step1: host memory allocation and initialization step1: thread ID initialization
step2: launch hip kernel, step2: device memory allocation and step2: thread indexing
step3: kernel synchronization; initialization

step3: SIMT calculation
step3: call the wrapper function step4: SIMT result writing back
step4: copy device memory back to host

step5: evaluate if the result is correct

AMDZ1

21 AMD | PUBLIC | Jan 2026 https://github.com/amd/GenAl-contest/tree/main/03-HIP LLM Acceleration/hip basics together we advance_

https://github.com/amd/GenAI-contest/tree/main/03-HIP_LLM_Acceleration/hip_basics

HIP GEMV Host Code Design

Given a matrix (128 x 4), a vector (4 x 1), GEMV(matrix, vector) produces an output vector (128 x 1),
A simple thread parallelism is to employ 128 threads to compute 128 rows in parallel

—>

host.cpp

A kernel

3 wrapper
function for

kernel calling

main() function
for evaluation

22 AMD | PUBLIC | Jan 2026

kernel.h

A

(*mat, *vec, *res) {

dim3 grid_dim (1, 1);
dim3 block_dim(128, 1);

Kernel_gemv_ve@<<<grid_dim, block_dim>>>(mat, vec, res);

hipDeviceSynchronize();

}

<half *>(mat.data_ptr<at
<half *>(vec.data_ptr<at
<half *>(res.data_ptr<at

(at::Tensor mat, at::Tensor vec, at::Tensor res)

::Half>()),
::Half>()),
::Half>())

— main() {

mat_rows
vec_cols H

// Allocate memory on CPU

* mat = (*)
* vec = (*)
* res = (*)

// Allocate memory on GPU

((**)&d_mat,
((**)&d_vec,
((**)&d_res,

// Host to Device
hipMemcpyHosttoDevice);
// Launch kernel

(d_mat, d_vec,
// Device to Host
/ /Print result

(i=0; i< mat_rows;
(“%f “, res[i]);

L}

(d_vec, vec, (vec_cols) * (

(res, d_res, (mat_rows) * (

(sizeof(float) * mat_rows * vec_cols);
(sizeof(float) * vec_cols);
(sizeof(float) * mat_rows);

// Fill in some data into mat and vec

(i = 0; i< mat_rows * vec_cols; ++i)
mat[i] = ()1.f;

(i = 9; i< vec_cols; ++i)

vec[i] = ()2.F;

*d_mat, *d_vec, *d_res;

mat_rows * vec_cols * ());
vec_cols * ())s
mat_rows * ())s

(d_mat, mat, (mat_rows * vec_cols) * ()

), hipMemcpyHosttoDevice);
d_res);
), hipMemcpyDeviceToHost);

++1)

AMDZ1

together we advance_

HIP GEMV Kernel Design

1,1 1,2 1,3 1,4 1 1,1
2,1 2,2 2,3 24 X 2 — 21
3,1 3,2 3,3 3,4 3 3,1
..... 4
| 1281 128,2 128,3 128,4 128,1
Matrix Vector
] # <hip/hip_runtime.h>
kernel.h # <hip/hip_fp16.h>
— #include <hip header file>
> hip gemv kernel >
implementation

hipcc --offload-arch=gfx1100 host.cpp -o gemv_veo
./gemv_ve

23 AMD | PUBLIC | Jan 2026

1+ 1,2 2 + 13 3 + 1,4 4 1
1 + 272 2 + 23 3 + 24 4)] 2
1 + 3,2 2 + 33 3 + 34 4 - 3
1 + 1282 2 + 1283 3 + 1284 4 128

__global __ void
unsinged int
unsigned int
unsigned int

(float *mat, float *vec, float* res) {
tid threadIdx.x;
row = tid;
start_idx = 4 * row;

(half *mat, half *vec, half *res)

float mat_he = mat[start_idx]; float mat_ho = mat[start_idx];
float mat_hl = mat[start_idx + 1]; float mat_hl = mat[start_idx + 1];
float mat_h2 = mat[start_idx + 2]; float mat_h2 = mat[start_idx + 2];
float mat_h3 = mat[start_idx + 3]; float mat_h3 = mat[start_idx + 3];
float vec_ho = vec[0]; float vec_ho = vec[0];
float vec_hl = vec[1]; float vec_hl = vec[1];
float vec_h2 = vec[2]; float vec_h2 = vec[2];
float vec_h3 = vec[3]; float vec_h3 = vec[3];
float sum = 0.0; float sum = 0.0;
sum += (mat_h@) * (vec_he); sum += (mat_ho) * (vec_ho);
sum += (mat_h1l) * (vec_hl); sum += (mat_h1) * (vec_hl);
sum += (mat_h2) * (vec_h2); sum += (mat_h2) * (vec_h2);
sum += (mat_h3) * (vec_h3); sum += (mat_h3) * (vec_h3);
res[row] = sum; res[row] = sum;
AMDZ1

together we advance_

Performance Optimization — Instruction Throughput

Control Flow & Divergence Use Efficient Operations

A wave executes in lockstep. If threads in a wavefront take different Some arithmetic operations are more expensive than

branches of an if/else, the GPU executes both paths, masking off threads, others. For example, multiplication is typically faster than division.
leading to divergence and wasted cycles.

Example: 8 Threads (for simplicity)
0|1 3|14|5|6/(7

Trade Precision for Speed

Consider using single-precision arithmetic instead of double -
precision if possible.

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (1 % 2 == 0)

// half the threads do this
out[i] = in[i] * 2.ef;

} \b

else

// half the threads do this

out[i] = in[i] * 3.0f; .

Intrinsic functions are predefined functions available in HIP that can

} often be executed faster than equivalent arithmetic operations.
AMDZ1
AMD | PUBLIC | Jan 2026 https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance gquidelines.html together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance_guidelines.html

Performance Optimization — Parallel Execution

Application Level Device Level

» Use asynchronous calls and streams to overlap host/device work. Send
serial work to CPU and parallel work to GPU.
Sequential calls:

Data1 Data2

Asynchronous calls: o Atits best every clock cycle has an instruction from a warp is ready for

Kernel
Data1

o Maximize utilization by executing enough kernels concurrently while

avoiding resource contention.

Multiprocessor Level

execution. This could either be another independent instruction of the

Stream #1: . .
same warp or an instruction of another warp.

Stream #2:

Kernel
Data2

https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance guidelines.html AMDZ
25 AMD | PUBLIC | Jan 2026 https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip runtime api/asynchronous.html together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance_guidelines.html
https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html

Performance Optimization — Memory Throughput

L2 R/W Cache L2 R/W Cache EEnm L2 R/W Cache
Per Memory Channel Per Memory Channel Per Memory Channel
i i 1 Local Data Share (LDS)
1 e On- chip shared memory for fast communication and data reuse, often
CrapnicaIticacs used as a software cache or for cooperative access to off- chip memory.
(GL1)

Global Data Share (GDS)

e Small on- chip memory shared across all WGPs and waves of a kernel.

Workgroup Texture R/W Texture R/W
Processor Cache LO Cache LO _
It provides hardware support of append/consume patterns and control

data for compute kernels, reduction operations, etc.

Device Memory Hierarchy (L2 — L1 — LO0)
o Multiple L2 cache channels feed read- only L1 and per- WGP LO

caches for off- chip memory accesses. Specialized cache- less load
instructions allow direct device memory reads when needed, while

caches improve reuse and aggregate scattered accesses.

AMDZ1

26 AMD | PUBLIC | Jan 2026 https://docs.amd.com/v/u/en-US/rdna3-shader-instruction-set-architecture-feb-2023 0 together we advance_

https://docs.amd.com/v/u/en-US/rdna3-shader-instruction-set-architecture-feb-2023_0

Performance Optimization — Memory Throughput

Local Data Share (LDS) Device Memory
Bank Conflict: It occurs when multiple threads in the same wave access the Coalescing: A memory access pattern is coalesced when consecutive
same bank in shared memory. In this case, accesses get serialized, leading threads access consecutive addresses. The hardware can combine them into
to inferior performance. fewer and wider transactions.
address in bytes
bank = 4 mod 32 Uncoalesced Access Coalesced Access
(Sample: For AMD GCN architecture) Threads Threads

Optimizations:
Padding: Change the bank mapping Ol]| ® I e
__shared__ float tile[32][23];

XOR Preshuffle: Permute the column indices for each row using XOR.

v
63 0 63

o «--

Use CK Tile abstractions: They automatically handles bank conflict
avoidance.
Memory Memory

Consider access patterns: Design algorithms with bank-friendly patterns. ~ .
Optimizations:

Avoid strided access: Array of Structures (AoS) — Structures of Arrays
(SoA).

Align or pad data: Achieve reading/writing contiguous segments.

https.//rocm.docs.amd.com/projects/HIP/en/latest/understand/programming model.htm| AMDI
27 AMD | PUBLIC | Jan 2026 https://rocm.docs.amd.com/projects/composable kernel/en/latest/conceptual/ck tile/hardware/lds bank conflicts.html together we advance_

https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://rocm.docs.amd.com/projects/composable_kernel/en/latest/conceptual/ck_tile/hardware/lds_bank_conflicts.html

28

Agenda

AMD | PUBLIC | Jan 2026

Introduction to the AMD ROCm™ Software Stack
Transitioning Workloads to AMD GPUs

Performance Optimization

Optimizing application using popular libraries
Profiling the models
Adding HIP kernel to implement a custom layer

Available Collaterals, Q&A

AMDZ1

together we advance_

AMD ROCm™ Software Developer Hub

High-level Overview

introduction

Increase Understanding

training videos

Build Comprehension

ROCm blog

ROCmM Developer Hub

29 AMD | PUBLIC | Jan 2026

AMD ROCm™ Developer Hub

Access all ROCm developer resources here — from documentation, to training webinars, to the latest blogs, and more.

Get to Know ROCm

nt tools, and APIs that

Developer Resources

ROCM with R

Al Models and Algorithms

OPyTorch 4 TensorFlow 5@

Libraries
Compilers and Tools

Runtimes

AMDD1 AMDZ1

INSTINET RADEON

ROCm Webinars

Al Ecosystem Optimized for AMD

AMD1

ROCm
Open, Proven, Ready Software Stack

Leadership Accelerators
and Graphics Cards

ROCm Training Videos

n about using the ROCm

Watch Now >

AMDZ1

together we advance_

https://www.amd.com/en/developer/resources/rocm-hub.html
https://www.amd.com/en/developer/resources/rocm-hub/training-videos.html
https://rocm.blogs.amd.com/
https://www.amd.com/en/products/software/rocm.html

AMD ROCm™ Documentation & Github Repository

Dive Deeper
documentation

AMD ROCm™ Software
AMDZN

ROCm 2
Ay 19k followers @ hitp

README . md

AMD ROCm™ Softwar

AMD ROCm software is AMD's Open Source stack for GPU computation.

To learn more about ROCm, check out our

If you have questions or need help, reach out to us on GitHub.

ROCm Github Organization

30 AMD | PUBLIC | Jan 2026

Github

ROCm Documentation

Install

How to

>

AMD ROCm documentation

AMDZ1

together we advance_

https://github.com/ROCm
https://github.com/ROCm/ROCm
https://rocm.docs.amd.com/
https://github.com/ROCm/ROCm

AMDOl Join Us

Registration Page AMD Deyv Assistant ‘

.

AMD Y

Al Developer Program ‘
=

O

https://account.amd.com/en/forms/reqgistration/ai-dev-program.html

https://account.amd.com/en/forms/registration/ai-dev-program.html

Disclaimer and Attributions

DISCLAIMER

The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the
preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect
to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual
property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement
between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Instinct, AMD ROCm, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

AMDZ1

32 AMD | PUBLIC | Jan 2026 together we advance_

AMD ¢\

