
AMD ROCm™ Basics &
Optimization Overview

Joe Liu 刘仕洲
Jan 2026AS

C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

2 |2 |

[Public]

Agenda 1. Introduction to the AMD ROCm™ Software Stack

2. Transitioning Workloads to AMD GPUs

3. Performance Optimization

• Optimizing application using popular libraries
• Profiling the models
• Adding HIP kernel to implement a custom layer

4. Available Collaterals, Q&AAS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

3 |3 |

[Public]

Optimized AI Software Stack

AI Models and Algorithms

Libraries

Compilers and Tools

Runtime

 AMD GPU

AI Ecosystem optimized for AMD

Leadership performance

Open, Proven, Ready
software stack

+ Other Frameworks
• Commitment to Open-Source

• No Code Change Execution

• Optimized for Generative AI

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

4 |4 |

[Public]

AMD ROCm™ Software Stack

 Business Services

 Finetuned Models

AI Solutions &
Services

Ecosystem

Triton

Hugging Face

Open Software
Platform

AMD GPU

Apache License

GPL License

RedHat, SLES & Ubuntu Device Drivers and Run-time

Compiler

RCCL

AI FocusedHPC Focused

rocThrust

Drivers
Runtimes

Compilers
& Tools

Accelerated AI
Math &

Communication
Libraries

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

5 |5 |

[Public]

Max Portability
IR-based Optimization

Max Performance
Framework Operator Optimization

Math Libraries

HIPCC Compilation

 AMD GPUs

Communication Libraries

Vendor-agnostic Optimizations

PyTorch TensorFlow PyTorch TensorFlow JAXTensorFlow

AMD EPYC™ CPU AMD GPUs ……

Target Specific
Optimizations

Target Specific
Optimizations

Library and Compiler Based Optimization

OpenAI Triton

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

6 |6 |

[Public]

Agenda 1. Introduction to the AMD ROCm™ Software Stack

2. Transitioning Workloads to AMD GPUs

3. Performance Optimization

• Optimizing application using popular libraries
• Profiling the models
• Adding HIP kernel to implement a custom layer

4. Available Collaterals, Q&AAS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

7 |7 |

[Public]

Transitioning AI Workloads to AMD GPUs

ML Frameworks
Python

ML Kernel
Development
C++, Triton IR

ML Libraries
C++

Drop-in
(Out-of-the-box)

Support

Port / Optimize
NVCC HIPIFY

CUDA Triton
Backend

ROCM Triton
Backend

Mirror
Equivalent Libraries

Drop-in

CUDA
KERNELS

CUDA
KERNELS

TRITON
KERNELS

TRITON
KERNELS

→ →

→ → HIPCC→

hipBLASlt,
rocSparse,

rocFFT,
RCCL,

MIOpen…

cuBLASlt,
cuSparse,

cuFFT,
NCCL,

cuDNN…

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

8 |8 |

[Public]

ROCm™ Software: Can You Spot a Difference?

AMD ROCm™ Software

import torch
import torch.nn as nn

Get cpu or gpu device for training.
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

Define model
class Network(nn.Module):
 def __init__(self):
 super().__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28 * 28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10)
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits

model = Network().to(device)
print(model)

import torch
import torch.nn as nn

Get cpu or gpu device for training.
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

Define model
class Network(nn.Module):
 def __init__(self):
 super().__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28 * 28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10)
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits

model = Network().to(device)
print(model)

NVIDIA CUDA

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

9 |9 |

[Public]

PyTorch 2.8 Easily Enabled on AMD GPUs

9

Step 1. Install ROCm™
Software (Driver and SDK)

Step 2. Install Pip Wheel
From Pytorch.Org

Step 3. Run Existing Code --
No Changes Required

Optionally Install Docker containers from:
• rocm/pytorch:latest
• rocm/pytorch-nightly:latest

PyTorch Build

Your OS

Package

Language

Compute Platform

Run this Command

Preview (Nightly)

Mac Windows

LibTorch SourceConda

C++ / Java

CUDA 12.8 CPUCUDA 12.6

pip3 install torch torchvision torchaudio --index-url
https://download.pytorch.org/whl/rocm6.4

import torch
import torch.nn as nn

Get cpu or gpu device for training.
device = "cuda:0" if torch.cuda.is_available() else
"cpu"
print(f"Using {device} device")

Define model
class Network(nn.Module):
 def __init__(self):
 super().__init__()
 self.flatten = nn.Flatten()
 self.linear_relu_stack = nn.Sequential(
 nn.Linear(28 * 28, 512),
 nn.ReLU(),
 nn.Linear(512, 512),
 nn.ReLU(),
 nn.Linear(512, 10)
)

 def forward(self, x):
 x = self.flatten(x)
 logits = self.linear_relu_stack(x)
 return logits

model = Network().to(device)
print(model)

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://download.pytorch.org/whl/rocm6.4

10 |10 |

[Public]

Agenda 1. Introduction to the AMD ROCm™ Software Stack

2. Transitioning Workloads to AMD GPUs

3. Performance Optimization

• Optimizing application using popular libraries
• Profiling the models
• Adding HIP kernel to implement a custom layer

4. Available Collaterals, Q&AAS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

11 |11 |

[Public]

Flash Attention, Xformers
● Tiling of input sequence in GPU SRAM to reduce VRAM data movement

GEMM Optimization – PyTorch TunableOp
● Automatic selection of the best performing GEMM kernels

Graph Optimization – HipGraph
● Launch multiple kernels through a single CPU operation

Paged Attention
● Partitioned KV cache into fixed size blocks to reduce memory usage

Query Key Value

Paged Attn
@ K/V cache

Flash Attn
@ SRAM

RCCL
@ parallelism

Collective communication – RCCL
● Collective Ops across multiple devices to support Tensor/Pipeline parallel

Quantization – GPTQ, Bitsandbytes
● Weight-only compression to reduce video memory footprint

HipGraph

Inference Challenges and Optimization Opportunities

Quantization
TunableOp
@ GEMM

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

12 |12 |

[Public]

Portability - Libraries

XFORMERS

import xformers.ops as xops

out = xops.memory_efficient_attention(q,
 k,
 v,
 attn_bias=None,
 op =None)

AITERFLASH_ATTN

from flash_attn import flash_attn_varlen_func

batch and sequence dimensions merged into a single dimension
q, k, v = (rearrange(x, "b s ... -> (b s) ...")
 for x in [q, k, v])

out = flash_attn_varlen_func(q,
 k,
 v,
 cu_seqlens_q=cu_seqlens,

cu_seqlens_k=cu_seqlens,
 max_seqlen_q=max_seqlen,
 max_seqlen_k=max_seqlen)

from aiter import flash_attn_varlen_func

batch and sequence dimensions merged into a single dimension
q, k, v = (rearrange(x, "b s ... -> (b s) ...")
 for x in [q, k, v])

out = flash_attn_varlen_func(q,
 k,
 v,
 cu_seqlens_q=cu_seqlens,

cu_seqlens_k=cu_seqlens,
 max_seqlen_q=max_seqlen,
 max_seqlen_k=max_seqlen)

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

13 |13 |

[Public]

Agenda 1. Introduction to the AMD ROCm™ Software Stack

2. Transitioning Workloads to AMD GPUs

3. Performance Optimization

• Optimizing application using popular libraries
• Profiling the models
• Adding HIP kernel to implement a custom layer

4. Available Collaterals, Q&AAS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

14 |14 |

[Public]

The Components in the Environment

Container 1 Container N

...
Applications

ROCm Toolkit
Container OS
User Space

Docker Engine

ROCm Toolkit
Host OS

AMD GPUs
Server

• User submits jobs (sbatch / srun)
• Slurm scheduling layer

• Allocate nodes / CPU / GPU
• Launch the container runtime

• Container layer (Docker / Apptainer)
• Application
• ROCm user space (HIP Runtime / rocBLAS / MIOpen)

• Host driver layer
• ROCm driver + kernel
• /dev/kfd, /dev/dri device mapping

• Hardware layer
• AMD GPUs & CPUs

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

15 |15 |

[Public]

The Profiling Tools and Visualization - rocm-smi
watch -c rocm-smi --showclocks

Show a quick summary of all GPUs
rocm-smi

Detailed power, temps, clocks, and utilization
rocm-smi --showpower --showtemp --showclocks –-showuse

Memory usage and PCIe info
rocm-smi --showmemuse –showbus

List GPU processes
rocm-smi –showpids

Real-time monitoring (refresh every 0.1s)
watch –n 0 rocm-smi

• A command-line utility and library provided by ROCm
for monitoring the following AMD GPU status:
• Power, temperature, clocks (gfx/mem), voltage, fan speed
• GPU utilization, memory usage (VRAM/GTT), PCIe link speed/width

• Typical usages:

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

16 |16 |

[Public]

The Profiling Tools and Visualization

PyTorch Profiler

ROCProfiler

• https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

import torch
from torch.profiler import profile, record_function, ProfilerActivity

• https://rocm.docs.amd.com/projects/rocprofiler/en/latest/install/install.html

• rocprof and rocprofv2 are included as standard components of the

ROCm distribution

• ROCTracer API is a library that requires minor code modification in

the application to be traced but provides greater flexibility

rocprof -d outputFolder --hip-trace ./Matrixtranspose

Use of third party marks/logos/products is for informational purposes only and no endorsement of or by AMD is intended or implied GD-83

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://rocm.docs.amd.com/projects/rocprofiler/en/latest/install/install.html

17 |17 |

[Public]

The Profiling Tools and Visualization - Samples

Drilling down into the prefill
stage reveals a detailed call
stack of the code.
(using ChatGLM as an
example.)

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

18 |18 |

[Public]

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

19 |19 |

[Public]

The Profiling Tools and Visualization – Omniperf

AMD GPUs

...

CLIGUI

 https://rocm.docs.amd.com/projects/omniperf/en/docs-6.2.1/what-is-omniperf.html

• Core Omniperf profiler
• Raw performance counters via application using ROCProfiler
• Hierarchical roofline data is obtained by a set of micro-benchmarks

• Grafana server for Omniperf
• Database: Raw performance counters are imported into a MongoDB
• Grafana GUI: It displays the relevant performance metrics and

visualization by retrieving the data from database

• Omniperf Standalone GUI Analyzer
• Omniperf provides a standalone GUI to enable basic performance

analysis without the need to import data into a database instance.

• Features
• Speed-of-Light (SOL)
• Hardware Block-level SOL Evaluations
• Roofline Analysis
• ...

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://rocm.docs.amd.com/projects/omniperf/en/docs-6.2.1/what-is-omniperf.html

20 |20 |

[Public]

Agenda 1. Introduction to the AMD ROCm™ Software Stack

2. Transitioning Workloads to AMD GPUs

3. Performance Optimization

• Optimizing application using popular libraries
• Profiling the models
• Adding HIP kernel to implement a custom layer

4. Available Collaterals, Q&AAS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

21 |21 |

[Public]

ROCm Core - Custom HIP GEMV Kernel “hello world” sample
• Given a matrix (M x N), a vector (N x 1), GEMV(matrix, vector) produces an output vector (M x 1)
• GPU kernel (kernel.h) launched from host (host.cpp) explores the GPU compute capability by a single

instruction multiple threads (SIMT) design

 step1: thread grid and block definition;
 step2: launch hip kernel;
 step3: kernel synchronization;

 step1: host memory allocation and initialization
 step2: device memory allocation and
initialization
 step3: call the wrapper function
 step4: copy device memory back to host
 step5: evaluate if the result is correct

#include "kernel.h"

 step1: thread ID initialization
 step2: thread indexing
 step3: SIMT calculation
 step4: SIMT result writing back

host.cpp kernel.h

The Implementation Structure of a HIP GEMV Kernel

https://github.com/amd/GenAI-contest/tree/main/03-HIP_LLM_Acceleration/hip_basics

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://github.com/amd/GenAI-contest/tree/main/03-HIP_LLM_Acceleration/hip_basics

22 |22 |

[Public]

HIP GEMV Host Code Design
• Given a matrix (128 x 4), a vector (4 x 1), GEMV(matrix, vector) produces an output vector (128 x 1),

• A simple thread parallelism is to employ 128 threads to compute 128 rows in parallel

host.cpp kernel.h

void demo_gemv_v0(float *mat, float *vec, float *res) {

dim3 grid_dim (1, 1);
dim3 block_dim(128, 1);

Kernel_gemv_v0<<<grid_dim, block_dim>>>(mat, vec, res);

hipDeviceSynchronize();
}

int main() {

int mat_rows = 128;
int vec_cols = 4;

// Allocate memory on CPU
float* mat = (float*)malloc(sizeof(float) * mat_rows * vec_cols);
float* vec = (float*)malloc(sizeof(float) * vec_cols);
float* res = (float*)malloc(sizeof(float) * mat_rows);

// Fill in some data into mat and vec
for (int i = 0; i< mat_rows * vec_cols; ++i)
 mat[i] = (float)1.f;
for (int i = 0; i< vec_cols; ++i)
 vec[i] = (float)2.f;

// Allocate memory on GPU
float *d_mat, *d_vec, *d_res;
hipMalloc((void **)&d_mat, mat_rows * vec_cols * sizeof(float));
hipMalloc((void **)&d_vec, vec_cols * sizeof(float));
hipMalloc((void **)&d_res, mat_rows * sizeof(float));

// Host to Device
hipMemcpy(d_mat, mat, (mat_rows * vec_cols) * sizeof(float),
hipMemcpyHosttoDevice);
hipMemcpy(d_vec, vec, (vec_cols) * sizeof(float), hipMemcpyHosttoDevice);

// Launch kernel
demo_gemv_v0(d_mat, d_vec, d_res);

// Device to Host
hipMemcpy(res, d_res, (mat_rows) * sizeof(float), hipMemcpyDeviceToHost);

/ /Print result
for (int i=0; i< mat_rows; ++i)
 printf(“%f “, res[i]);
}

(at::Tensor mat, at::Tensor vec, at::Tensor res)

reinterpret_cast<half *>(mat.data_ptr<at::Half>()),
reinterpret_cast<half *>(vec.data_ptr<at::Half>()),
reinterpret_cast<half *>(res.data_ptr<at::Half>())AS

C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

23 |23 |

[Public]

HIP GEMV Kernel Design

hipcc --offload-arch=gfx1100 host.cpp -o gemv_v0
./gemv_v0

kernel.h #include <hip/hip_runtime.h>
#include <hip/hip_fp16.h>

__global__ void kernel_gemv_v0(float *mat, float *vec, float* res) {
 unsinged int tid = threadIdx.x;
 unsigned int row = tid;
 unsigned int start_idx = 4 * row;

 float mat_h0 = mat[start_idx];
 float mat_h1 = mat[start_idx + 1];
 float mat_h2 = mat[start_idx + 2];
 float mat_h3 = mat[start_idx + 3];

 float vec_h0 = vec[0];
 float vec_h1 = vec[1];
 float vec_h2 = vec[2];
 float vec_h3 = vec[3];

 float sum = 0.0;
 sum += (mat_h0) * (vec_h0);
 sum += (mat_h1) * (vec_h1);
 sum += (mat_h2) * (vec_h2);
 sum += (mat_h3) * (vec_h3);

 res[row] = sum;
}

(half *mat, half *vec, half *res)

 float mat_h0 = mat[start_idx];
 float mat_h1 = mat[start_idx + 1];
 float mat_h2 = mat[start_idx + 2];
 float mat_h3 = mat[start_idx + 3];

 float vec_h0 = vec[0];
 float vec_h1 = vec[1];
 float vec_h2 = vec[2];
 float vec_h3 = vec[3];

 float sum = 0.0;
 sum += __half2float(mat_h0) * __half2float(vec_h0);
 sum += __half2float(mat_h1) * __half2float(vec_h1);
 sum += __half2float(mat_h2) * __half2float(vec_h2);
 sum += __half2float(mat_h3) * __half2float(vec_h3);

 res[row] = __half2float sum;

1,1 1,2 1,3 1,4
2,1 2,2 2,3 2,4
3,1 3,2 3,3 3,4

128,1 128,2 128,3 128,4
…..

Matrix

1
2
3
4

Vector

x =
+1,1 1

2,1 1
3,1 1

128,1 1

+
+
+

+1,2 2
2,2 2
3,2 2

128,2 2

+
+
+

+1,3 3
2,3 3
3,3 3

128,3 3

+
+
+

1,4 4
2,4 4
3,4 4

128,4 4
…..

=
1
2
3

128

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

24 |24 |

[Public]

Performance Optimization – Instruction Throughput

Control Flow & Divergence
• A wave executes in lockstep. If threads in a wavefront take different

branches of an if/else, the GPU executes both paths, masking off threads,
leading to divergence and wasted cycles.

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i % 2 == 0)
{
 // half the threads do this
 out[i] = in[i] * 2.0f;
}
else
{
 // half the threads do this
 out[i] = in[i] * 3.0f;
}

Example:
0 1 2 3 4 5 6 7

8 Threads (for simplicity)

Use Efficient Operations
● Some arithmetic operations are more expensive than

others. For example, multiplication is typically faster than division.

Trade Precision for Speed
● Consider using single-precision arithmetic instead of double-

precision if possible.

Leverage Intrinsic Functions
● Intrinsic functions are predefined functions available in HIP that can

often be executed faster than equivalent arithmetic operations.

 https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance_guidelines.html

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance_guidelines.html

25 |25 |

[Public]

Device Level
● Maximize utilization by executing enough kernels concurrently while

avoiding resource contention.

Application Level
● Use asynchronous calls and streams to overlap host/device work. Send

serial work to CPU and parallel work to GPU.

Multiprocessor Level
● At its best every clock cycle has an instruction from a warp is ready for

execution. This could either be another independent instruction of the

same warp or an instruction of another warp.

Performance Optimization – Parallel Execution

Sequential calls:

Default Stream:

Stream #1:

Stream #2:

Asynchronous calls:

Sequential calls:

 https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance_guidelines.html
https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/performance_guidelines.html
https://rocm.docs.amd.com/projects/HIP/en/latest/how-to/hip_runtime_api/asynchronous.html

26 |26 |

[Public]

Local Data Share (LDS)
● On‑ chip shared memory for fast communication and data reuse, often

used as a software cache or for cooperative access to off‑ chip memory.

Device Memory Hierarchy (L2 → L1 → L0)
● Multiple L2 cache channels feed read‑ only L1 and per‑ WGP L0

caches for off‑ chip memory accesses. Specialized cache‑ less load

instructions allow direct device memory reads when needed, while

caches improve reuse and aggregate scattered accesses.

Global Data Share (GDS)
● Small on‑ chip memory shared across all WGPs and waves of a kernel.

It provides hardware support of append/consume patterns and control

data for compute kernels, reduction operations, etc.

Performance Optimization – Memory Throughput

https://docs.amd.com/v/u/en-US/rdna3-shader-instruction-set-architecture-feb-2023_0

...

SGPR
128 x 32

...

Workgroup
Processor

SIMD 0 SIMD 3

L2 R/W Cache
Per Memory Channel

L2 R/W Cache
Per Memory Channel

L2 R/W Cache
Per Memory Channel

Graphics L1 Cache
(GL1)

Cross Bar

Texture R/W
Cache L0

Texture R/W
Cache L0

SALU

12
8 x

 32

SGPR VGPR

10
24

 x
32

VALU

GDS (4KB) - Shared by all Compute Units

LDS - 128kB per WGP

...AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://docs.amd.com/v/u/en-US/rdna3-shader-instruction-set-architecture-feb-2023_0

27 |27 |

[Public]

Performance Optimization – Memory Throughput

Local Data Share (LDS)

Bank Conflict: It occurs when multiple threads in the same wave access the
same bank in shared memory. In this case, accesses get serialized, leading
to inferior performance.

(Sample: For AMD GCN architecture)

Optimizations:
• Padding: Change the bank mapping

• XOR Preshuffle: Permute the column indices for each row using XOR.
• Use CK Tile abstractions: They automatically handles bank conflict

avoidance.
• Consider access patterns: Design algorithms with bank-friendly patterns.

Device Memory

Coalescing: A memory access pattern is coalesced when consecutive
threads access consecutive addresses. The hardware can combine them into
fewer and wider transactions.

Optimizations:
• Avoid strided access: Array of Structures (AoS) → Structures of Arrays

(SoA).
• Align or pad data: Achieve reading/writing contiguous segments.

https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html

__shared__ float tile[32][33];

0 63

Uncoalesced Access

0 63

Threads

0 63

Threads

Coalesced Access

0 63

Memory Memory

https://rocm.docs.amd.com/projects/composable_kernel/en/latest/conceptual/ck_tile/hardware/lds_bank_conflicts.html

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://rocm.docs.amd.com/projects/HIP/en/latest/understand/programming_model.html
https://rocm.docs.amd.com/projects/composable_kernel/en/latest/conceptual/ck_tile/hardware/lds_bank_conflicts.html

28 |28 |

[Public]

Agenda 1. Introduction to the AMD ROCm™ Software Stack

2. Transitioning Workloads to AMD GPUs

3. Performance Optimization

• Optimizing application using popular libraries
• Profiling the models
• Adding HIP kernel to implement a custom layer

4. Available Collaterals, Q&AAS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

29 |29 |

[Public]

ROCm Developer Hub

AMD ROCm™ Software Developer Hub
Initiative to Educate and Increase ROCm™ Software Stack User Base and Adoption

Increase Understanding
Attend ROCm webinars
View one of the many training videos

Build Comprehension
Purchase ROCm textbook
See the latest news on ROCm blog

High-level Overview
Familiarize yourself with the ecosystem
General introduction of ROCm Software

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://www.amd.com/en/developer/resources/rocm-hub.html
https://www.amd.com/en/developer/resources/rocm-hub/training-videos.html
https://rocm.blogs.amd.com/
https://www.amd.com/en/products/software/rocm.html

30 |30 |

[Public]

ROCm Github Organization

AMD ROCm™ Documentation & Github Repository
Playground for Professional Developers

Dive Deeper
Refer to ROCm documentation
Make contributions to all major components on Github

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://github.com/ROCm
https://github.com/ROCm/ROCm
https://rocm.docs.amd.com/
https://github.com/ROCm/ROCm

Join Us

Registration Page AMD Dev Assistant

https://account.amd.com/en/forms/registration/ai-dev-program.html

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

https://account.amd.com/en/forms/registration/ai-dev-program.html

32 |32 |

[Public]

Disclaimer and Attributions

DISCLAIMER
The information contained herein is for informational purposes only, and is subject to change without notice. While every precaution has been taken in the
preparation of this document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise
correct this information. Advanced Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document, and assumes no liability of any kind, including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect
to the operation or use of AMD hardware, software or other products described herein. No license, including implied or arising by estoppel, to any intellectual
property rights is granted by this document. Terms and limitations applicable to the purchase or use of AMD’s products are as set forth in a signed agreement
between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

©2025 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Instinct, AMD ROCm, and combinations thereof are trademarks of
Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

 A
SC
26
集
训
营

 A
SC
26
集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

AS
C2
6集
训
营

